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Abstract

Beginning university training programs must focus on different competencies for mathematics teachers, i.e., not
only on solving problems, but also on posing them and analyzing the mathematical activity. This paper reports
the results of an exploratory study conducted with future secondary school mathematics teachers on the
introduction of problem-posing tasks in formal mathematics courses, specifically in abstract algebra and real
analysis courses. Evidence was found that training which includes problem-posing tasks has a positive impact on
the students’ understanding of definitions, theorems and exercises within formal mathematics, as well as on
their competency in reflecting on the mathematical activity.
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1 INTRODUCTION

In the last decade, there has been an increase in the number of research studies on the knowledge and
competencies that future mathematics teachers need to acquire in order to succeed in their profession (Rubio,
2012; Ball, Thames & Phelps, 2008; Hill et al., 2008; Silverman & Thompson, 2008; Font, 2011). For example,
Rubio (2012) points out that a mathematics teacher must not only attain competency in mathematics, but also
competency in the analysis of the mathematical activity. This work intends to show how training including
problem-posing tasks is a powerful tool to facilitate not only the comprehension of mathematical concepts, but
also the reflection on the mathematical activity. Specifically, the objective of this research was:

Objective: To study the effect that introducing problem-posing tasks in abstract algebra and real analysis
courses has on the comprehension of mathematical concepts and the academic achievement of prospective
secondary school mathematics teachers.

The structure of this paper is as follows: after this introduction, which also explains the objective of the
research, a review of the literature on task design and problem-posing is carried out to provide a theoretical
framework. Next, the methodology used in this research is explained and the experiment itself is described. The
article ends with some concluding remarks.
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2 THEORETICAL FRAMEWORK
2.1 Problem-Posing

Several researchers in the field of mathematics education have focused their attention not only on problem-
solving, but also on problem-posing. For example, Malaspina (2013) states that problem-posing is closely
related to problem-solving and contributes to the development of mathematical thinking, by providing
opportunities for students and teachers to discuss generalizations and take initial steps towards mathematical
research.

Beginning university training programs must develop the problem-posing —or at least the problem-
reformulating— skills of future mathematics teachers in order to achieve their educational objective. Singer and
Voica (2013) report that despite teachers being naturally predisposed to posing problems, they need to be
adequately trained in this skill as part of their university studies in order to acquire an effective technique. In
this research with future mathematics teachers, this strategy seeks, on the one hand, to facilitate the
assimilation of proper mathematical concepts and, on the other hand, to promote reflection on mathematics
and future professional work.

Malaspina (2013) states that this strategy stimulates the ability to pose and solve problems, leads to reflections
on teaching and mathematics, may give problems a greater potential than that they were originally conceived
to have, and shows the importance of properly drafting the statement, as varying the requirement and the
mathematical environment of a problem creates opportunities for generalizations and the extension of the
mathematical horizon. Furthermore, according to Espinoza, Lupiafiez and Segovia (2014), posing problems is a
way to develop the students’ creativity and encourage them to take responsibility for their own learning. On the
other hand, it appears to be a window into mathematical understanding, as it can be used to assess the
students’ acquisition of mathematical skills. It also improves the students’ disposition and attitude towards
mathematics. In this document, problem-posing is not only a means of achieving formal understanding of
mathematical concepts; it is also a means through which future teachers can reflect on the mathematical
activity.

2.2 Task design

When designing the tasks, we considered the four aspects of problem-posing described by Malaspina (2013):
information, requirement, mathematical context and mathematical environment. In this case, the information
consisted of definitions, theorems and problems from textbooks; the requirement was to achieve a basic level
in the areas of abstract algebra and real analysis; the mathematical context was intra-mathematical, specifically
the group-concept and the continuous functions topics; and the mathematical environment was the
demonstration process in work groups.

Should any particular process be followed in order to pose a problem? Problem-posing is closely related to
problem-solving. Singer and Voica (2013) state that “when the process of solving is a successful one, a solver
successively changes his/her cognitive stances related to the problem via transformations that allow different
levels of description of the initial wording.” They claim that problem-solving involves four operational
categories: decoding, representing, processing and implementing. This framework can be helpful when
analyzing the original problem, modifying it or posing a new problem.

For this study, different types of tasks were designed to train students in problem-posing: comprehension of
definitions, modification of problems from a textbook, modification of modified problems, creation of counter
examples and generalization.

2.3 Methodology

This research was based on the MAB500 Introduction to Analysis and MA0371 Abstract Algebra courses in the
mathematics-teaching programs at the Universidad Nacional de Costa Rica and the Universidad de Costa Rica,
respectively. Eight students attended the analysis course and 20 students attended the algebra course. Both
courses can be described as traditional formal mathematics courses and are generally characterized by lacking
any relation to secondary-school mathematics and not requiring any sort of didactic reflection on the
mathematical activity. The context used for the algebra course was the concept of the group as an algebraic
structure, whereas for the analysis course, the context was the composition of continuous functions.
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For data-collection purposes, a diary was used in which all classroom events were recorded. The problems
posed by the working groups were collected as evidence. A week later, a specific individual written test was
administered in order to assess the understanding of mathematical concepts. Finally, the students answered a
questionnaire to evaluate the activity. Only some of the students’ problems, comments and results are reported
here, due to space restrictions.

3 THE EXPERIMENT IN THE ABSTRACT ALGEBRA COURSE

During the lessons based on traditional methodology, the teacher merely gave the definition of a group
followed by some examples and immediately moved on to the inherent properties of this concept. However, in
this experiment, the teacher gave the formal definition of a group and proposed a task that required the
students to reflect on the details of each part of the definition before proceeding to superior levels of
understanding, i.e., creating their own groups from a given set.

3.1Task 1

A group (G, *) is a non-empty set (G) with an operation (*) that fulfills these characteristics:
1) The operation (*) satisfies the closure and association properties.

2) An identity element e € G exists, so that g*e = e*g =g in all cases.

3) For each element g € G, there is an inverse element g' € G, so that g*g'=g'*g =e.

Express in your own words the meaning of each point (1 to 3) of the definition of a group. Then, if possible,
formulate an operation for each of the following sets in order to obtain a group:

U={ball}, A={0,1}, B={1,-1}, C={a,b}, D={0,1,-1}, E={a,b,c}.
Apparently, the students had no problems with understanding each part of the definition of a group. However,
when trying to create groups, they realized that some things were not as clear as they thought. When trying to
formulate an operation (*) for the set U={ball} that would result in a group (U ,*), they encountered difficulties.
Some of them mistakenly formulated the operation ball + ball = 2ball, but the element 2ball was not in the set,
which did not satisfy the closure property. After a few discussions, they correctly formulated that

©+0=¢
=
Figure 1. Operation in a unitary group, ball + ball = ball

They reflected on mathematical definitions and the fact that nothing that is not explicitly stated can be
assumed. We should not adhere to a preconceived idea regarding the symbolism. + in this case is only a symbol
and does not refer to the usual addition of natural numbers. This fact, which they discovered, would have gone
unnoticed if a traditional teaching methodology had been applied, as happened in other semesters.

For the set {0,1}, some students formulated an operation (*) as follows: 0 if they are equal, and 1 if they are
unequal. For {1,-1}, another group of students formulated the operation * as the usual product of integers, and
for the set {a, b}, they formulated an operation (*) as follows: a if they are equal, and b if they are unequal,
repeating the same argument used before for {0,1}. After that, they were asked to draw the operation tables for
each group, which made them realize that the three groups were actually the same. This was an introduction to
the isomorphism of groups. Finally, they concluded that groups of order two could be structurally characterized
by G = {e, a}, where e plays the identity role and a = a™. This type of strategy generates additional questions by
the students. For example, some asked themselves how they could characterize a group of order three or four,
although this was not part of the original task. Using the closure and association properties of groups and the
cancellation law several times, they found the answer. Without much difficulty, they simply reached the
conclusion that there was one and only one group of order three, G, = {e, a, a*}, where a* =a™. They also
concluded by themselves that there were only two types of groups of order four. One is the group G; ={e, a, b,
c}, in which each element is its own inverse. In the other group, G, = {e, a, b, b™'}, one of the elements, in this
case a, is its own inverse, b has a different inverse, and b® = a. The operation tables for these groups are shown
in Figure 3.
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A= {ﬂ,l} where

b B @# b then (4% isa
1, a=b

group wheree=1and a'=a Vae 4_

fB={l,-1} Va,be Ba=b=asb then
(B,+)is a group where e=1and_

a'=avaeB

If ¢ = {a,b} and * is defined by _

a*b=brg=p
a*a=a,b*b=a

,

then (B, *) is a group where e=a

anda=avaec

Figure 2. Creation of groups of order two

Figure 3. Operation tables for the groups of order four created by the students

3.2 Task 2

Imagine you have two different coins with a value of 100 and ¢50 on a table. Create a group where the
operation (°) is the composition of the movements of the coins and G is the set of those movements (Pinter,
2010).

Figure 4. Costa Rican coins
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After several attempts, they described some movements, such as changing the position of the coins on the
table, turning them upside down and tossing them in the air (they realized that the coins could come up either
heads or tails, and since the result was not the same, they discarded this movement). Another point of
discussion was whether it was the coin itself or its position that mattered. One group, taking into account the
position of the coins, defined the following movements:

V:: flipping over the coin with a value of §100, V.: flipping over the coin with a value of ¢50, V: flipping over both
coins, C: switching the coins, V,C: switching the coins and then flipping over the coin with a value of ¢100, V,C:
switching the coins and then flipping over the coin with a value of 50, CV: flipping over both coins and then
switching them and I: not changing anything.

Using G = {V,, V,, V, C, V1C, V,C CV, I} and the operation °, which consists of performing any two movements in
succession, they obtained the group that is shown in Figure 5.

Figure 5. Group created with eight coin movements

Another group of students opted not to take into account the position of the coins, focusing on whether they
came up heads or tails. Although they had originally stated that the value of the coin did not matter, they
actually took it into account in their table, as they differentiated the coin with a value of ¢100 from the coin
with a value of ¢50. When they created the table, they realized that this was not a group. For example, in the
table they obtained V, © C = V, ° | = C = I, which contradicts the principle that all elements in a group are
different. This is why they decided to eliminate movement C, in order to obtain a group of order four.

These two interpretations proved to be a source of interesting discussions and reflections on both mathematics
and the interpretation of problems. One student said: “Professor, it is important to be clear in the statements; |
never imagined that someone could interpret it in this other way.” The original problem was not clear enough,
so it allowed for different interpretations.

Students were told that this is actually a subgroup of the group of order eight created by the first group of
students, which is a good example of isomorphic groups. What matters is the structure of the group, not the
characterization of the elements, the operation used, or the different interpretations.
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Task 6:

Coin 1:to the left

Coin 2: to the right

The value of the coin does not
matter, only whether it comes up
heads or tails.

Consider J = {F{,I’;,V,CJ} .

Figure 6. Operations table with five coin movements that are not a group

4 THE EXPERIMENT IN THE ANALYSIS COURSE

The experiment was also carried out in a real analysis course, on the topic of continuous functions. The teacher
explained the composition theorem for continuous functions (CTCF), the proof of which was presented in the
traditional way. After that, a new methodology was implemented.

4.1 Strategy used: What if not?

Posing problems is not an easy and immediate task for students, but they have to be trained to do it. According
to Sang-Hun, Jae-Hoon, Eun-Ju and Hyang-Hoon (2007), “there are some strategies necessary to help students
to pose new problems: posing of new auxiliary problems, changing of conditions, or combination and
disassembly. Among these strategies, the so-called ‘What if not?’ strategy suggested by Brown & Walter (1990)
is one of the most widely used strategies.” In this experiment, the students were provided with an original
problem, taken from Bartle and Sherbert (2010, pp. 160), and asked questions of the type “What if not?”
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Original problem

f: R>R and g: R=>R are two functions defined by g(1) =0 and g(x):= 2 if x # 1, and f(x):=X + 1 ¥V xEIR . You
have to demonstrate that lim,o (g © f)(x) # (g ° f)(0). Why doesn’t this fact contradict the composition theorem
for continuous functions (CTCF)?

The students solved the problem without any difficulty. One of the solutions is shown in the next figure.

Proof:

(o)) ={2 7

8NN =10 oy
ljff‘}(gﬂf)(x]=1;i_132=2¢£{f(ﬂ})=8ﬂ)=ﬂ

Therefore,

this does not contradict the CTCF because g
is not continuous in f(0)=1.

Figure 7. Solution of the original problem

After this, they were asked to change the conditions of the above problem in order to pose a new problem.
Since this was the first time that they were formulating problems, a guide was provided. They were then asked
to complete the following sentence:

the function f
the function g

...is not... continuous?
...does not have... |an avoidable discontinuity at x=17?

What if

4.2 Some problems posed by the students

Some problems posed by the students are shown below. Note that they began with variations of the original
problem and then moved on to variations of their own problems.

Problem 1: (application of the CTCF at x=3)
If g(x) = x - 2 and f(x) = x, justify whylim,.s (g ° f)(x) = g(f(3)).

Problem 2: (generalization of Problem 1)
If g(x) = x - 2 and f(x) = x?, justify why lim g(f(x)) = g(f(c)).

x=c

Problem 3: (application of the CTCF)

Iff: R>R" and g: R">IR , where f(x) = x> -x + 1 and g(x) = 1nx, demonstrate that lim,s. (g ° f)(x) = g(f(c))
Y ceER.

Problem 4: (modification of Problem 3)
If g(x) = 1nx and f(x) = x? -x, can you guarantee that lim,. (g ° f)(x) = g(f(c))?

Problem 5: (modification of Problem 4)

If g(x) = \/ X and f(x) = x* -x, determine the values of x = c for which lim,. (g ° f)(x) = g(f(c)).
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Problem 6: (modification of Problem 5)

If £ g are two functions defined by f(x) = \/X—l and g(x) = x + 1, determine the values of ¢ for which lim,.
(g  f)(x) = g(f(c)). Do the samefor fef,g°g,g°f°g.

Problem 7: (modification of Problem 4, with a mistake)
If g(x) = 1n(x) and f{x) = x + 1, why lim,1 (g ° f)(x) # g(f(-1))?

In Problem 1, the CTCF is applied at a specific point, x = 3, while in Problem 2, it is applied at any point x = c.
Problem 3 is a higher-level variation: it is concerned with this composition being well-defined, so it verifies that
it only contains positive images. Problem 4 is a variation of the above problem, in which f includes some
negative images, so the composition might not be well-defined. Problem 5 is a variation of Problem 4 which,
instead of asking whether the equality is correct, asks for the values of x at which the equality holds. Problem 6
generalizes other types of compositions.

Problem 7 asks for proof that two things are different, losing sight of the existence of the mathematical objects
involved. It must be proven that lim,s.1 (g ° f)(x) # g(f(-1)), regardless of whether these mathematical objects
exist. In this case, the limit of the composition does not exist because lim,-.1+(g ° f)(x) = liMys.1«In(x + 1) = -co.
On the other hand, lim,5.1+ (g ° f)(x) does not exist, and neither does g(f(-1)) = g(0) = 1n(0).

Figure 8. Graphical representation of g(f(x)) =1n(x + 1), mentioned in Problem 7

After these reflections, the students reformulated the problem with the following corrections:
Correction of Problem 5:

If g(x) = 1nx and f(x) = x + 1 determine whether lim,5.1+ (g ° f)(x) and g(f(-1)) exist, and justify your answer. Can
you say that lim,. (g ° f)(x) # g(f(-1))?

Problem 8: (another incorrect problem)
If g(x) = sin(x) and f(x) = 1/x, justify the fact that lim,so(g ° f)(x) # g(f(0)).

Problem 9: (problem with a non-removable discontinuity)

If f(x) = [|x|]] and g(x) = %1 ,is it true that lim,-, (g ° f)(x) = g(f(1))?
X
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Problem 10: (modification of Problem 9)

If f(x) = [|x|] and g(x) = determine whether lim g(f(x)) = g( lim f(x)).

2 ’
X +1 x>1 x>1

Problem 11: (modification of Problem 10)

If f(x) = [|x|] and g(x) = %1 , determine whether lim f(g(x)) = f{ lim g(x)).

2
X x=21 x>1

Problem 12: (two discontinuous functions)
If f(x) =x + 1, where x # 0 and f(0) = -5, and g(x) = 2x, where x ¥ -5 and g(-5) 2, is it true that lim,, (g ° f)(x) =
g(f(0))?

In Problem 8, the left-hand limit does not exist because it ranges from -1 to 1. Moreover, f(x) = 1/x is not
defined at X = 0, so f(0) is not defined. The students corrected this problem. Sometimes mistakes can be a very
good motivation for learning. It is important to note that this problem involves oscillatory discontinuities, not
simply removable discontinuities, as the original problem did. Problems 9, 10 and 11 also illustrate other non-
removable discontinuities, such as the floor function.

In Problem 9, the equality lim,1 (g ° f)(x) = g(f(1)) is not satisfied because the limit as x approaches 1 does not
exist. Problem 10 shows one of errors most commonly made by calculus students, namely, when it is possible to
“insert” the limit within the composition, i.e., when it is true to say that
limes1g(fix)) = g( lim f(x))
x>1

In this case (Problem 10), the equality is not valid since lim f(x) = lim [|x|] does not exist. Problem 11 changes g

x=21 x21

o fto fe g, so that the equality lim f(g(x)) = f{ lim g(x)) is now true because it is a direct application of the CTCF.
x>1

x>1
The function g is continuous at x=1 and the function f is continuous at g(1) = 1/2. Moreover, since 1< 1 +x’, [|1/
(1 +x?|] = 0, then the composition f ° g is zero. Finally, Problem 12 shows two discontinuous functions whose
composition turns out to be continuous.

4.3 Generalizing a problem

In the last task, students were asked to generalize the original problem, so that it becomes only a specific case.
This task clearly required that they have a higher level of understanding, because generalization implies “doing
math.” They were given a guide of questions to help them in their task. After a great deal of discussion within
the groups and then at class level, using a collaborative method, they detailed the characteristics of each of the
functions until they achieved the following generalization, to the great satisfaction of everyone.

Generalization of the original problem

If f, g and h are three functions defined by g(c) = a and g(x) = h(x), where x # ¢, and f, h are continuous and f is
also invertible, demonstrate that if d = f(c), then lim,s4(g ° A(x) # (g ° f)(d). Why doesn’t this fact contradict
the CTCF?
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Proaf:
) if flresxz (@)
(gof )(x) =
a f fix)=cex=[170)
Therefore,

Jim g(f() = lim h(f(x) = h(e) .
since fis continuous and so is hin x=c. However,

(gof )(f (e =g(f (S ' (e))=gle)=a

andg # h(e), 5o we have

lim g(f(x))# (gof)(S'(e))

x=s J~

This does not contradict the CTCF because f must be
continuous in d= f'(c) and g must be continuous
in f{d) = ¢ . Inthiscase, g is not continuous

ine = £(f(e)).

Figure 9. Generalization of the original problem by a group of students

5 CONCLUSIONS

The introduction of problem-posing and problem-variation tasks increased the students’ understanding and
academic performance in both courses (algebra and analysis). Compared to other semesters, the scores on the
written test were very much improved. These tasks increased the students’ performance in different ways,
thanks to their active involvement in them. Tasks related to understanding a problem, definition or theorem
and the consequences of modifying some of its assumptions led to a better (and faster) understanding of
formal demonstrations. This was evident from the results of a written test that we administered. Moreover, a
change in the students’ attitude towards problems posed in textbooks was observed: now they do not simply
attempt to solve a problem, but also analyze its statement, thereby achieving a better understanding of the
theory that they have to apply to solve it. Another positive outcome was an increase in the students’
motivation, particularly among students with lower academic performance, who did not participate much in
class. Although these tasks were more time-consuming than traditional lecture sessions, they facilitated the
understanding of the subsequent topics, which could then be presented more quickly. Finally, it is important to
note that these tasks can ease the transition from traditional lessons to innovative lessons, in which students
not only do math, but also reflect on mathematics.
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