
Journal of Technology and Science Education
JOTSE, 2019 – 9(3): 257-268 – Online ISSN: 2013-6374 – Print ISSN: 2014-5349

https://doi.org/10.3926/jotse.491

A NEW CHARACTER-LEVEL ENCRYPTION ALGORITHM:
HOW TO IMPLEMENT CRYPTOGRAPHY IN AN ICT CLASSROOM

David Arboledas-Brihuega

Departamento de Tecnología, IES Profesor Domínguez Ortiz (Spain)

darboledas@edu.jccm.es

Received June 2018
Accepted February 2019

Abstract

It is evident that the society in which we live will demand more and more qualified and specialized
positions in the different branches of engineering. Now we are in a highly digitized world in which
information is continuously transmitted through data communication networks with the expectation of
security and confidentiality. Students who are in their last year at high school face the problem of deciding
their professional future. Therefore, there is a wide field of research for them in cryptographic techniques.
In this work we have developed, together with a group of high school students, a cryptographic algorithm
with substitution and transposition techniques as described by Feistel (1973) in order to create a more
comprehensive knowledge about what they have been studying in their ICT subjects.
In most cases the teaching methods are based on the teachers' own vision, as well as on the absence of
knowledge of alternative methods and/or the impossibility of applying them physically in the classroom.
With the active and cooperative methodology put forward in this work, objectives such as hard work,
autonomous and collaborative learning and the exchange of knowledge have been absolutely fulfilled.
Achieving them requires replacing traditional methods so that the student can adapt to new work
challenges.
A group of students, only three of whom finished, were voluntarily provided with the mentoring service
in which the algorithm was designed. As a result, we were able to program in Python as a final project a
symmetrical character-level encryption algorithm we've referred to as Azrael.
Our findings indicate a demand for future endeavours to take into account the need for more project-
based work in ICT classrooms. The exchange of ideas between teacher and students has been the driven
force behind the success of this activity.

Keywords – Cryptography, Azrael, Symmetrical character-level encryption algorithm, ICT,
Substitution-permutation network, Student-centred methodologies.

To cite this article:

Arboledas-Brihuega, D. (2019). A new character-level encryption algorithm: How to implement
cryptography in an ICT classroom. Journal of Technology and Science Education, 9(3), 257-268.
https://doi.org/10.3926/jotse.491

-257-

mailto:darboledas@edu.jccm.es
https://doi.org/10.3926/jotse.491
https://doi.org/10.3926/jotse.491
http://www.omniascience.com/
https://orcid.org/0000-0001-8922-1632

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.491

1. Introduction

The protection of information has garnered much attention in recent years despite being a concern of
companies and governments since time immemorial. Cryptography is an art and science. It is a playing
major role in every information and security division. The main aim of the cryptography is protecting the
data from unauthorized users (Zaidan et al., 2010). Encryption techniques occur or used by using shifting
-positions held by units of plaintext are shifted according to a regular system- and substitution -units of
plaintext are replaced with ciphertext, according to a fixed system- techniques, as well as mathematical
operations (Hannan & Asif, 2017).

The modern design of symmetric encryption algorithms is block ciphers –encrypt a group of plaintext
symbols as one block– and is based on the concept of iterative product ciphering (Bard, 2009). Shannon
(1949) analysed product encryption and suggested that improving security involved replacement and
transposition operations. Iterative product ciphers perform the encryption process in multiple stages,
known as rounds, each of which uses a different subkey derived from the original key (Even & Goldreich,
1985). Iterative product encryption algorithms are based on the concepts of confusion (trying to hide the
relationship between clear text, ciphertext and key by substitution) and diffusion (trying to spread the
influence of each symbol of the original message among the ciphered message by permutations), which
are combined to give rise to so-called product ciphers (Biham & Dunkelman, 2012).

These techniques basically consist of splitting the message into blocks of a certain size and applying the
encryption function to each of them. Product encryptions using only substitutions and permutations are
called substitution-permutation networks (Feistel, 1973). A substitution-permutation (SP) network takes a
block of plain text and a key and applies several rounds of substitution transformations followed by
transposition operations (Shannon, 1949).

The basic components of these symmetric key algorithms are the S-boxes (substitution boxes) and the
P-boxes (permutation boxes). An S-box replaces a small block of text with another in a one-to-one
transformation. A secure S-box should ensure that changing a single input symbol changes at least half
the output symbols (Hoffstein, Pipher & Silverman, 2008). A P-box performs a permutation or
transposition of all symbols and feeds the S-boxes of the next round. A secure P-box will have the
property that the output symbols of any S-box are distributed in the next round among the largest
number of S-boxes (Hoffstein et al., 2008).

The transformation process in each round is controlled with a subkey derived from the original key
(Figure 1).

This paper presents how an algorithm using a SP network has been implemented in Python. Finally, in
order to determine the degree of student satisfaction, they were given a final survey. From their answers it
can be deduced that the students have recognised the extra effort it has meant for the teacher and
themselves to achieve the objective proposed.

Figure 1. General scheme of a SP network

-258-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.491

2. AIMS

Taking as our starting point the knowledge acquired in the last two years of computer science (on classical
substitution and transposition techniques), we have successfully designed a symmetric key block cipher
unit that we named Azrael that operates in groups of symbols of variable length, called blocks, applying
an invariant transformation to them. When encrypting, Azrael takes a block of plain text as input and
yields a block of the same size of encrypted text. The exact transformation is controlled by a second
input, the secret key.

3. Design
The designed algorithm is a symmetrical encryption cipher implemented to use dynamic substitution and
permutation boxes. This means that the blocks into which the plain text or the cryptogram is divided are
variable in length.

The algorithm takes as input a text of length n and divides it into blocks of equal size as the key used. The
default key is a random string of ten symbols. Interestingly, each time the program is run, a new password
is generated, so you are guaranteed not to repeat the same key again. That key is then fragmented into two
subkeys (K1 and K2), so that they are used to divide each block into two parts (Lo, left and Ro, right) of
the same length as the subkeys.

Each subkey will operate in one transposition and one substitution over Lo and Ro in each input block.
Then, L and R fragments will rotate twice to ensure that the K1 and K2 subkeys act on both parts.

3.1. First Round

Round 1 consists on taking Lo to be subjected to a permutation and Ro to a Vigenère substitution
(Hannan & Asif, 2017; Arboledas-Brihuega, 2017), both controlled by subkey K1 (Figure 2, Stage 1).

3.2. Second Round

Round 2 consists on a substitution over L1 and a permutation over R1, both controlled by the subkey K2.
Now, both fragments exchange positions before entering the following boxes (Figure 2, Stage 2).

3.3. Third Round

In the third round, the fragment L2 is subjected to a transposition and the fragment R2 to a Vigenère
substitution, both ruled by the subkey K1 (Figure 2, Stage 3).

3.4. Fourth Round

The fourth round involves a replacement of fragment L3 and a permutation of fragment R3, managed by
subkey K2, just before undergoing a new exchange of positions and regenerating the block again, which
will already have the same length as the original password used (Figure 2, Stage 4).

The whole regenerated block is then subjected to a new substitution, managed by the original key, to
introduce further confusion (Figure 2, last substitution).

Finally, to avoid that two identical blocks of plain text can be encrypted in the same way, a transposition,
controlled by the entire original key, is carried out on the complete cryptogram, thus achieving the greatest
possible diffusion in the encrypted message (Figure 2, last transposition).

The result is a cryptogram with enough confusion and diffusion so that obtaining plain text without the
original password is not trivial. The diagram of the algorithm implemented in Python to encrypt a plain
text is as follows (Figure 2).

-259-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.491

Figure 2. Azrael algorithm encryption scheme

4. Source Code to Encrypt
The source code of the program azrael.py, which works according to the scheme in Figure 2, is as follows:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Implementation of a Dynamic Boxes Encryption System (DBES) 'Azrael'
David Arboledas-Brihuega
Feel free to use it and break it!

from math import ceil
import S_Box
import P_Box
import random
import pyperclip
ALPHABET='abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
PASS_LEN = 10

def main():
 num = 0
 key = ''
 message = input('Plaintext: ')

 while num <= PASS_LEN:
 symbol = random.choice(ALPHABET)
 if symbol not in key:
 key = key + symbol
 num = len (key) +1
 password = key
 key1 = password[0:PASS_LEN // 2] # subkey K1
 key2 = password[PASS_LEN // 2:PASS_LEN] # subkey K2

-260-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.491

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

 Boxes = generate_boxes(message)
 message = S_andP_Boxes(Boxes, len(Boxes), key1, key2) # Rounds
 message = substitution(message, password) # Last S-Box
 message = permutation(message, password) # Last P-Box

 print('Ciphertext: ', '\n', message)
 print('Key: ', '\n', key)

 pyperclip.copy(message)

def fill_box(last_box): # Fill the last box with Ç if necessary
 gaps = PASS_LEN - len(last_box)
 last_box += 'Ç' * gaps
 return last_box

def generate_boxes(message):
 Boxes = []
 number_of_boxes = ceil(len(message) / PASS_LEN)

 for i in range(number_of_boxes):
 inf = PASS_LEN * i
 sup = PASS_LEN * (i + 1)
 Boxes.append(message[inf:sup])

 Boxes[-1] = fill_box(Boxes[-1])

 return Boxes

def S_andP_Boxes(Boxes, number_of_boxes,key1,key2):
 # Round1
 message_Round1 = []

 for j in range(number_of_boxes):
 first = Boxes[j][0:PASS_LEN // 2] # Box first half
 second = Boxes[j][PASS_LEN // 2:PASS_LEN] # Box second half
 message_Round1.append(permutation(first, key1))
 message_Round1.append(substitution(second, key1))

 # Round2
 message_Round2 = []

 for j in range(0, number_of_boxes):
 first = message_Round1[2 * j]
 second = message_Round1[2 * j + 1]
 message_Round2.append(substitution(first, key2))
 message_Round2.append(permutation(second, key2))

 message = swapp(message_Round2, Boxes)

 # Round3
 message_Round3 = []

 for i in range(number_of_boxes):
 message_Round3.append(permutation(message[2 * i], key1))
 message_Round3.append(substitution(message[2 * i + 1], key1))

 # Round4
 message_Round4 = []

-261-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.491

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

 for j in range(0, number_of_boxes):
 message_Round4.append(substitution(message_Round3[2 * j], key2))
 message_Round4.append(permutation(message_Round3[2 * j + 1], key2))

 message = swapp(message_Round4, Boxes)

 return ''.join(message)

def substitution(message, password):
 return S_Box.method(password, message, 'encrypt')

def swapp(message, Boxes):
 for i in range(len(Boxes)):
 message[2 * i], message[2 * i + 1] = message[2 * i + 1], message[2 * i]
 return message

def permutation(message, password):
 return P_Box.encrypt(message, password)

if __name__ == '__main__':
 main()

4.1. The Module S_Box.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

This module encrypts or decrypts substitution boxes using Vigenère algorithm
Usage: S_Box(key, message, ['encrypt'/'decrypt'])

LETTERS = r""" 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzÇ"""

def method(key, message, use):
 translated = [] # stores the S_Box string

 key_index = 0

 for symbol in message: # loop through each symbol in message
 num = LETTERS.find(symbol)

 if num != -1: # symbol found in LETTERS
 if use == 'encrypt':
 num += LETTERS.find(key[key_index])
 else: # decrypt
 num -= LETTERS.find(key[key_index])
 num %= len(LETTERS) # handle the potential wrap-around

 # add the encrypted symbol to the end of translated
 translated.append(LETTERS[num])
 key_index += 1 # move to the next letter in the key

 if key_index == len(key):
 key_index = 0

 return ''.join(translated)

-262-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.491

4.2. The Module P_Box.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

This module jumbles up the symbols with a columnar transposition.
The permutation is defined by the alphabetical order of the symbols in the keyword.
Usage: P_Box.[encrypt/decrypt](message, key)

from math import ceil

def encrypt(message, key):
 limit = ceil(len(message) / len(key))
 # Each string in ciphertext represents a column
 ciphertext = [''] * len(key)
 for col in range(len(key)): # Loop through each column in ciphertext
 pointer = col
 while pointer < len(
 message): # Keep looping until pointer goes past the length of the message
 # Place the character at pointer in message at the end of the
 # current column in the ciphertext list.
 ciphertext[col] += message[pointer]
 pointer += len(key) # Move pointer over
 return order(ciphertext, key, 'encrypt')

def order(ciphertext, key, use): # Order columns in grid by ASCII
 translated = [] # stores the P_Box string
 order_key = sorted(key)
 for i in range(len(key)):
 symbol = order_key[i]
 if use == 'encrypt':
 translated.append(ciphertext[key.index(symbol)])
 else:
 symbol = key[i]
 translated.append(ciphertext[order_key.index(symbol)])
 # Convert the translated list into a single string value and return it.
 return ''.join(translated)

def decrypt(ciphertext, key):
 return permutation_decipher(decipher(ciphertext, key), len(key))

def permutation_decipher(ciphertext, key):
 # Number of columns in the matrix
 col_number = ceil(len(ciphertext) / key)
 row_number = key # Number of rows
 empty_cell = (col_number * row_number) - \
 len(ciphertext) # Number of empty cells
 plaintext = [''] * col_number # Each text string is a column
 col = 0
 row = 0
 for symbol in ciphertext:
 plaintext[col] += symbol
 col += 1 # Next column
 # If there are no more columns or it is an empty cell, we go back to
 # the first column of the next row
 if (col == col_number) or (col == col_number -
 1 and row >= row_number - empty_cell):
 col = 0
 row += 1
 return ''.join(plaintext)

-263-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.491

62
63
64
65
66
67
68
69

def decipher(ciphertext, key):
 col_number = ceil(len(ciphertext) / len(key))
 text = []
 block = len(key)
 items = col_number
 for i in range(0, len(ciphertext) + 1, items):
 text.append(ciphertext[i:i + items])
 return order(text, key, 'decrypt')

5. Encrypting with Azrael
Once the program and its two modules just described above are written (downloadable from
http://bit.ly/azraelcode), it is only needed to run the module azrael.py and enter the plaintext. The key will
be randomly chosen and the ciphertext is then obtained:

Plaintext: In a village of La Mancha the name of which I have no desire

Ciphertext:

 aPWqPXCaUhcvLbEWVR8oj8RmWkdaxxggHRMTFLL8LÇseHzwwBqM8ALcTcPRc

Key: NMgBDCZUX4

6. Source Code to Decrypt
We have designed Azrael as a symmetric encryption system; therefore, it is enough to invert the process in
order to decode a ciphertext obtained with this algorithm. The source code of the program azrael_de.py,
which works according to the scheme in Figure 2 in reverse order, is as follows:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Decipher implementation of 'Azrael'
David Arboledas-Brihuega, 2017
Feel free to use it and break it!

from math import ceil
import S_Box
import P_Box
import pyperclip

def main():
 message = input('Ciphertext: ')
 password = input('Key: ')
 pass_len = len(password)
 key1 = password[0:pass_len // 2] # subkey K1
 key2 = password[pass_len // 2:pass_len] # subkey K2
 message = permutation(message, password) # First P-Box
 message = substitution(message, password) # Second S-Box
 boxes = generate_boxes(message, pass_len)
 message = S_andP_Boxes(boxes, len(boxes), pass_len, key1, key2) # Rounds

 print('Plaintext: ', '\n', message.rstrip('Ç'))

def fill_box(last_box, pass_len): # Fill the last box with Ç char if necessary
 gaps = pass_len - len(last_box)
 last_box += 'Ç' * gaps
 return last_box

def generate_boxes(message, pass_len):
 boxes = []
 number_of_boxes = ceil(len(message) / pass_len)

-264-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.491

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

 for i in range(number_of_boxes):
 inf = pass_len * i
 sup = pass_len * (i + 1)
 boxes.append(message[inf:sup])

 boxes[-1] = fill_box(boxes[-1], pass_len)
 return boxes

def S_andP_Boxes(boxes, number_of_boxes, pass_len, key1, key2):
 messageRound1 = []

 for j in range(number_of_boxes):
 first = boxes[j][0:pass_len // 2] # boxes' first half
 second = boxes[j][pass_len // 2:pass_len] # boxes' second half
 messageRound1.append(permutation(first, key2))
 messageRound1.append(substitution(second, key2))
 message = swapp(messageRound1, boxes)
 messageRound2 = []

 for i in range(number_of_boxes):
 messageRound2.append(permutation(messageRound1[2 * i], key1))
 messageRound2.append(substitution(messageRound1[2 * i + 1], key1))
 messageRound3 = []

 for j in range(0, number_of_boxes):
 first = messageRound2[2 * j]
 second = messageRound2[2 * j + 1]
 messageRound3.append(permutation(first, key2))
 messageRound3.append(substitution(second, key2))

 message = swapp(messageRound3, boxes)
 messageRound4 = []

 for j in range(number_of_boxes):
 first = message[2 * j]
 second = message[2 * j + 1]

 messageRound4.append(permutation(first, key1))
 messageRound4.append(substitution(second, key1))

 return ''.join(messageRound4)

def substitution(message, key):
 return S_Box.method(key, message, 'decrypt')

def swapp(message, boxes):
 for i in range(len(boxes)):
 message[2 * i], message[2 * i + 1] = message[2 * i + 1], message[2 * i]
 return message

def permutation(message, password):
 return P_Box.decrypt(message, password)

if __name__ == '__main__':
 main()

-265-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.491

7. Decrypting with Azrael

When azrael_de.py is executed the program will ask for the encrypted text and password that was used to
encrypt the original message. Then, the plaintext will be shown:

Ciphertext: aPWqPXCaUhcvLbEWVR8oj8RmWkdaxxggHRMTFLL8LÇseHzwwBqM8ALcTcPRc

Key: NMgBDCZUX4

Plaintext: In a village of La Mancha the name of which I have no desire

8. Project Assessment

At the end of the project, all the students, including those who left the project, completed a final survey to
assess the adequacy of the effort required. From the data gathered in this survey, it can be deduced that
most of them considered they had to work harder (Figure 3).

They were also asked if they thought that this methodology of cooperative learning on a project basis was
the most appropriate for this purpose. The answered questions about this teaching-learning method can
be seen on Figure 4.

They were finally asked about their preferences regarding the method they preferred to be assessed in the
subject and why among the following: continuous evaluation, work-group exams and co-evaluation
(Table 1).

From the data gathered in this survey, it can be seen that the most popular method of evaluation by
tutorized students was continuous evaluation and then work-group tests. Regarding this last method,
students think they established a sense of responsibility among their members, since the score depended
on all of them.

Figure 3. Students’ opinion about the degree of effort
with the activity

Figure 4. Degree of satisfaction with the methodology used

-266-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.491

Assessment method First option Second option Third option

Continuous evaluation 67.9 % 19.9 % 12.2 %

Work-group exams 19.9 % 67.9 % 12.2 %

Coevaluation 12.2% 12.2 % 75.6%

Table 1. Preferred Methods of Assessment

9. Conclusions

As a result of the new educational evaluation focused on students and their development, we have seen
the need to define a tutorial project, of a voluntary nature, to evaluate teamwork through a formative
evaluation, so that students can be convinced of their level of competence with feedback techniques
(Pachler, Daly, Mor & Mellar, 2010).

The project used as a framework was the coding in Python of an encryption program that introduces
enough confusion and diffusion into the cryptogram so that obtaining the clear text without the original
password is not trivial.

For its design we have only used transpositions and substitutions operations, which have been learned by
the students in their classes. Although the two operations may be simple to break separately, their
combination as product encryption creates enough complexity to find a solution easily.

The coded program shows students how to achieve a practical application from the different theoretical
knowledge they acquire during their training. Even though the algorithm is simple, it uses the same
methodology as other strong encryption algorithms, such as AES.

It is very important to note that Azrael does not use secure S-boxes, which will be the next
implementation we will be made in a new project in the ICT classroom, so it should only be used as an
educational tool, not to encrypt sensitive information.

In this paper we have come to the conclusion that while project work introduces a very interesting
methodology, it is also true that the current school system is not prepared for it. The same curricula
continue to be used, with increasingly shorter times, and this means extra work that not all students can
do. However, despite the fact that only three students finished the project, the general feeling was one of
success in having achieved an objective that seemed impossible for them.

In conclusion, we can assure that the development of the mentoring project has been a success. Students
have been left with a great feeling of achievement working in teams because they have felt themselves an
essential part of their own training.

Acknowledgements
The author would like to thank all the students in the final year of Information and Communication
Technologies at the secondary school Professor Domínguez Ortiz. Their opinions will undoubtedly help
us to improve the transmission of the necessary skills.

Declaration of Conflicting Interests

The author declares no potential conflicts of interest with respect to the research, authorship or
publication of this article.

Funding
Unfortunately, the author did not receive financial support for the research, authorship and/or publication
of this article, only the personal satisfaction of seeing how students put into practice the different skills
worked in class.

-267-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.491

References

Arboledas-Brihuega, D. (2017). Criptografía sin secretos con Python (1st ed.) (283-306). Paracuellos de Jarama,
Madrid: Ra-Ma.

Bard, G. (2009). Algebraic cryptanalysis (29-52). Springer.

Biham, E., & Dunkelman, O. (2012). Techniques for Cryptanalysis of Block Ciphers. New York, NY: Springer.

Even, S., & Goldreich, O. (1985). On the power of cascade ciphers. ACM Transactions on Computer Systems,
3, 108-116. https://doi.org/10.1145/214438.214442

Feistel, H. (1973). Cryptography and computer privacy. Scientific American, 228(5), 15-23.
https://doi.org/10.1038/scientificamerican0573-15

Hannan, S., & Asif, A. (2017). Analysis of Polyalphabetic Transposition Cipher Techniques used for
Encryption and Decryption. International Journal Of Computer Science And Software Engineering, 6(2), 41-46.

Hoffstein, J., Pipher, J., & Silverman, J. (2008). An Introduction to Mathematical Cryptography. New York, NY:
Springer.

Pachler, N., Daly, C., Mor, Y., & Mellar, H. (2010). Formative e-assessment: Practitioner cases. Computers &
Education, 54(3), 715-721. https://doi.org/10.1016/j.compedu.2009.09.032

Shannon, C.E. (1949). Communication theory of secrecy systems. The Bell System Technical Journal, 28,
656-715. https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

Zaidan, B., Zaidan, A., Al-Frajat, A., & Jalab, H. (2010). On the Differences between Hiding Information
and Cryptography Techniques: An Overview. Journal of Applied Sciences, 10(15), 1650-1655.
https://doi.org/10.3923/jas.2010.1650.1655

Published by OmniaScience (www.omniascience.com)

Journal of Technology and Science Education, 2019 (www.jotse.org)

Article’s contents are provided on an Attribution-Non Commercial 4.0 Creative commons International License.
Readers are allowed to copy, distribute and communicate article’s contents, provided the author’s and JOTSE

journal’s names are included. It must not be used for commercial purposes. To see the complete licence contents,
please visit https://creativecommons.org/licenses/by-nc/4.0/.

-268-

https://creativecommons.org/licenses/by-nc/4.0/
http://www.jotse.org/
http://www.omniascience.com/
https://doi.org/10.3923/jas.2010.1650.1655
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1016/j.compedu.2009.09.032
https://doi.org/10.1038/scientificamerican0573-15
https://doi.org/10.1145/214438.214442

	A NEW CHARACTER-LEVEL ENCRYPTION ALGORITHM: HOW TO IMPLEMENT CRYPTOGRAPHY IN AN ICT CLASSROOM
	1. Introduction
	2. AIMS
	3. Design
	4. Source Code to Encrypt
	5. Encrypting with Azrael
	6. Source Code to Decrypt
	7. Decrypting with Azrael
	8. Project Assessment
	9. Conclusions
	Acknowledgements
	Declaration of Conflicting Interests
	Funding
	References

