Some pattern recognitions for a recommendation framework for higher education students’ generic competence development using machine learning

Chi-ho So, Pui-ling Chan, Simon Chi-wang Wong, Adam Ka-lok Wong, Ho-yin Tsang, Henry C. B. Chan

Abstract


The project presented in this paper aims to formulate a recommendation framework that consolidates the higher education students’ particulars such as their academic background, current study and student activity records, their attended higher education institution’s expectations of graduate attributes and self-assessment of their own generic competencies. The gap between the higher education students’ generic competence development and their current statuses such as their academic performance and their student activity involvement was incorporated into the framework to come up with a recommendation for the student activities that lead to their generic competence development. For the formulation of the recommendation framework, the data mining tool Orange with some programming in Python and machine learning models was applied on 14,556 students’ activity and academic records in the case higher education institution to find out three major types of patterns between the students’ participation of the student activities and (1) their academic performance change, (2) their programmes of studies, and (3) their English results in the public examination. These findings are also discussed in this paper.

Keywords


Classification and clustering, supervised, unsupervised learning

Full Text:

PDF HTML


DOI: https://doi.org/10.3926/jotse.1707


Licencia de Creative Commons 

This work is licensed under a Creative Commons Attribution 4.0 International License

Journal of Technology and Science Education, 2011-2024

Online ISSN: 2013-6374; Print ISSN: 2014-5349; DL: B-2000-2012

Publisher: OmniaScience